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FOREWORD 

This  report  describes  accomplishments  on  a  UGV  RSTA  project  conducted  by  a  con¬ 

sortium  led  by  the  University  of  Maryland  and  including  the  University  of  Pennsylvania, 

the  University  of  Rochester,  and  the  National  Institute  of  Standards  and  Technology.  We 

first  review  work  done  on  the  design,  implementation  and  integration  of  real-time  vision 

algorithms  for  image  stabilization,  detection  of  moving  objects  from  a  moving  platform  and 

camera  control  We  then  present  brief  descriptions  of  a  number  of  supporting  basic  research 

projects  conducted  by  the  members  of  the  consortium. 

IV 



1  Introduction 

Our  RSTA  on  the  Move  project  is  a  program  combining 

•  development  and  integration  activities  ultimately  leading  to  an  experimental,  real-time 

active  vision  system  for  locating  and  tracking  moving  targets  from  a  mobile  platform, 

and 

•  basic  research  on  fundamental  active  vision  problems  including  motion  estimation, 

image  sequence  stabilization,  detection  and  characterization  of  independent  motion 

patterns,  and  real-time  sensor  control. 

Our  integration  activities  involve  algorithm  development  and  integration  on  the  Datacube 

real-time  image  processing  platform,  and  experimentation  on  video  sequences  obtained,  ini¬ 

tially,  off-line  from  a  sensor  mounted  on  a  HMMWV  at  NIST,  and,  ultimately,  on-line  using 

the  same  NIST  platform  with  onboard  real-time  and  parallel  processing.  Section  2  describes 

our  accomplishments  on  development  and  integration. 

Real-time  algorithms  for  image  stabilization  and  moving  object  detection  have  been  de¬ 

veloped  at  Maryland,  while  Rochester  has  developed  a  more  general  real-time  algorithm  for 

detection  of  independently  moving  objects.  Both  the  Maryland  stabilization  algorithm  and 

the  Rochester  independent  motion  detector  have  been  transferred  to  the  NIST  Datacube, 

and  were  demonstrated  during  1995  at  Martin  Denver.  Other  work  involves  the  integration 

of  these  two  algorithms  on  a  common  Datacube/SPARC  platform,  and  design  and  imple¬ 

mentation  of  spatio-temporal  grouping  algorithms  for  focusing  attention  of  the  active  vision 

component  of  our  system  on  an  image  window  containing  an  independently  moving  object. 

Research  at  the  University  of  Pennsylvania  has  emphasized  camera  control  algorithms  that 

allow  us  to  track  the  moving  target  and  to  maintain  as  large  an  image  of  the  target  as  pos¬ 

sible  through  control  of  a  zoom  lens.  Some  core  camera  control  software  has  been  ported 

to  the  NIST  platform,  with  NIST  and  Pennsylvania  collaborating  on  the  design  and  imple¬ 

mentation  of  the  full  camera  control  subsystem.  Figure  1  shows  the  tasks  of  the  individual 

contractors. 

1 



Overall  System  Organization 

In  addition  to  development  and  integration  activities,  the  consortium  supported  a  broad 

spectrum  of  fundamental  research  activities  in  time- varying  image  analysis  and  active  vision. 

A  set  of  research  vignettes  is  presented  in  Section  3,  including  descriptions  of  research  projects 

on  motion  estimation,  image  stabilization,  comparison  of  image  stabilization  algorithms  in 

the  context  of  a  real-time  target  acquisition  and  tracking  system  (joint  research  with  the 

Army  Research  Laboratory),  and  camera  control. 

2  Integration  Activities 

2.1  University  of  Maryland 

(Yiannis  Aloimonos,  Stephen  Balakirsky,  Rama  Chellappa,  Loong  Fah  Cheong,  Cornelia  Fermiiller, 

Carlos  Morimoto,  Yi-Sheng  Yao) 

Research  at  Maryland  emphasized  image  stabilization,  with  some  supporting  research 

on  detection  of  constrained  (vehicle-like)  independent  motion.  The  goal  of  our  image  sta¬ 

bilization  process  was  to  maintain  a  stable  scene  background  in  a  video  image  sequence. 

This  is  accomplished  by  estimating  and  compensating  for  the  effects  of  the  movement  of  the 

vehicle  on  the  original  input  image  sequence,  so  that  in  the  resulting  stabilized  sequence  the 

2 



background  of  the  scene  appears,  ideally,  as  if  the  vehicle  were  stationary. 

After  the  sequence  is  stabilized,  independently  moving  objects  can  be  detected  using  ei¬ 

ther  the  flow-based  approach  developed  at  the  University  of  Rochester,  or  a  frame-differencing 

approach  developed  by  the  University  of  Maryland.  The  Maryland  approach  is  based  on  an 

efficient  algorithm  for  computing  a  temporal  median  filter  from  the  stabilized  sequence.  To 

optimize  for  detection  of  independent  vehicle  motion,  we  employ  a  filtering  approach  that 

integrates  the  results  of  velocity-tuned  filters  over  several  frames  and  produces  the  final  out¬ 

put  of  the  system.  Details  of  the  Maryland  work  are  given  below,  with  an  emphasis  on  the 

real-time  implementation  of  image  stabilization  developed  by  Carlos  Morimoto. 

2.1.1  Real-time  Digital  Image  Stabilization 

Our  image  stabilization  system  is  composed  of  two  modules:  one  for  motion  estimation 

and  a  second  one  for  motion  compensation.  The  motion  compensation  process  removes 

unwanted  motion  from  the  desirable  smooth  motion  following  the  initial  estimation  process. 

An  advantage  of  electronic  image  stabilizers  over  mechanical  ones  is  that  motion  can  be 

compensated  on  demand,  offering  great  flexibility  by  simply  modifying  some  parameters  of 

the  compensation  algorithm. 

2.1.2  Motion  Estimation 

Our  first  prototype  described  in  [9]  was  based  on  a  multi-resolution  image  registration  tech¬ 

nique  developed  by  Zheng  and  Chellappa  [20].  The  technique  matches  a  small  set  of  feature 

points  between  two  frames  using  a  weighted  correlation  scheme  and  estimates  four  affine  mo¬ 

tion  parameters  using  the  computed  feature  displacements.  The  processing  of  each  higher 

resolution  level  refines  the  estimates  obtained  from  the  registration  of  the  lower  resolution 

levels.  This  scheme  was  later  replaced  by  a  faster  multi-resolution  tracking  scheme  that 

works  from  coarse  to  fine  levels.  We  also  adopted  a  different  similarity  measure,  given  by 

the  sum  of  squared  differences  (SSD)  of  local  patches  around  each  feature.  No  estimation  or 

refinement  is  done  between  different  resolution  levels,  and  the  final  displacements  are  used 

to  estimate  the  motion  parameters. 

3 



In  order  to  estimate  the  movement  of  the  camera  in  a  rigid  environment  we  use  the  model 

described  in  [20].  To  better  understand  the  model,  consider  a  camera  mounted  on  a  balloon. 

The  camera  is  pointing  down  at  a  flat  surface  5,  with  its  optical  axis  always  perpendiculax  to 

S.  In  such  a  configuration,  translations  and  rotations  of  the  balloon  will  cause  the  image  to 

trajislate  and  rotate  correspondingly.  The  image  will  change  scale  according  to  the  balloon’s 

changes  of  altitude. 

Under  this  motion  model,  the  transformation  between  two  different  camera  positions  is 

defined  by 

Xo 

^  cos  0  —  sin  0  0 

Xi 

(ax) 

yp 

= sin  0  cos  0  0 

y\ 

+ 

Ay 

Zo  j 

^  0  0  1^ 

yz,  j 

yAz  ̂ 

(1) 

where  (xj,  t/j,  2,-)  are  3-D  coordinates  relative  to  a  coordinate  system  fixed  on  the  camera  at 

time  ti,  for  i  =  {0, 1}.  (Ax,  Ay,  Az)  define  the  translation  of  the  camera  measured  from  the 

coordinate  frame  at  time  to,  and  0  is  the  rotation  angle,  also  measured  with  respect  to  the 

coordinate  frame  at  time  to-  Image  coordinates  at  time  t,  will  be  denoted  by  {Xi,Yi).  The 

image  plane  defined  by  the  Xi  and  Yi  axes,  which  are  respectively  parallel  to  the  x,-  and  i/,- 

axes  and  consequently  perpendicular  to  the  z,  axis,  has  its  origin  at  zi  =  /  where  /  is  the 

camera  focal  length.  Under  this  configuration,  the  equations  for  perspective  projection  are 

Xi 

\ 

/ 

/ 

Zi 

\yi) 

(2) 

Combining  (1)  and  (2),  we  get 
Xo 

To 

f  Xq 

Zq 

fyp 

Zo 

f  (xi cos 6  —  yisinO  +  Ax) 

Zl 

^Xi  cos  0  —  li  sin  0  -h  / zi  -}-  Az zi  -1-  Az 

/  (xi  sin  0  +  yi  cos  0  -|-  Ay) 

-  1 

(Xisme  +  YiCose  + f—) \  Z\  ) 
zi  -f  Az zi  -f  Az 

(3) 

(4) 

The  term  21/(21  -f-  Az)  =  zi/zo  is  the  change  in  scale  and  will  be  denoted  by  S,  while 

the  terms  (/  Ax)/(2i  -f  Az)  and  (/  Ay){z\  -1-  Az)  correspond  to  the  translation  in  the  image 
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coordinate  system,  which  will  be  denoted  by  (AX,  AK).  In  matrix  notation,  the  relation 

between  two  image  frames  taken  at  times  to,  ti  is 

^  cos  0  —  sin  0  ̂ 1 
^  AX  ' 

=  <s 

^  i'"  J ^  sin0  COS0  y 

Uw  ' 

yAY  ) 

Notice  that  the  scale  factor  S  in  this  model  is  inversely  proportional  to  the  ratio  of  the 

distances  between  two  arbitrary  image  points  at  times  to,ti.  Thus  S  can  also  be  obtained 

by  considering  any  two  points  in  the  image  frames  taken  at  to  and  ti.  Let  Ao  and  Bo  be  two 

arbitrary  points  in  the  image  frame  at  to  (/o),  and  Ai  and  Bi  be  their  corresponding  points 

in  fi-  Let  Si  be  the  distances  between  Ai  and  Bi,  for  i  =  {0, 1}.  Then  the  scale  factor  can 

be  computed  by 

S  -  —  -  — 
Zo  Si 

The  next  section  shows  how  to  use  this  model  to  recover  the  four  parameters  that  describe 

the  2D  motion  of  the  camera.  It  is  assumed  for  the  moment  that  a  set  of  matched  pairs  of 

features  is  available.  Descriptions  of  the  feature  detection  and  tracking  process  will  be  given 

later. 

2.1.3  Recovering  the  Motion  Parameters 

Given  a  set  Si  of  N  feature  points  in  frame  fi  and  the  set  Sj  of  corresponding  points  in  frame 

fj,  the  scaling  factor  <S  is  computed  from  (6)  since  it  is  invariant  to  translation  and  rotation. 

The  distances  are  taken  with  respect  to  the  center  of  mass  of  each  set.  The  position  of  the 

center  is  given  by 

k=l  •'''  k=l 

where  (X /,  Y /)  are  the  coordinates  of  the  center  of  mass  of  the  feature  set  S j  and  {Xjk,  Yjk) 

are  the  {X,Y)  coordinates  of  feature  k  in  frame  /.  Let  Sfk  be  the  distance  from  feature  k  to 

the  center  of  mass  for  frame  f,  so  the  scale  between  two  frames  i  and  j  can  be  computed  by 
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where  denotes  the  matrix  transpose  of  X. 

The  computation  of  the  translation  and  rotation  parameters  follows  the  estimation  of  the 

scaling  factor.  Assuming  small  rotations,  the  trigonometric  terms  of  (5)  can  be  linearized  to 

obtain 

/ I 
1  -0 

0  1 

^  \  /  AX 

(Vj;.  J  \  Ar 
(9) 

Using  (9)  for  all  N  matched  point  pairs,  a  system  of  2N  linear  equations  in  three  un¬ 

knowns  (0,  AX,  and  AF)  is  obtained.  Rearranging  (9)  in  the  matrix  form  b  =  Ax,  we 

have 

b  = 

1 

Co
 

1 
— 

‘ 

O 
.  . 

SXjx  0  1 

e  '
 

i 

;  A  = 

I 

;  X  = 

AX 

Xijv  —  SXjN -SYjN  1  0 ^AY  J 

^  YiN  —  SYjN  j ^  sXjN  0  1  y 

(10) 

where  x  can  be  solved  using  the  normal  equation  x  =  (A* A)  ̂A*b. 

2.1.4  Automatic  Extraction,  Selection  and  Tracking  of  Feature  Points 

2D  models  are  appropriate  for  image  sequences  of  distant  scenes  where  perspective  effects 

can  be  neglected.  Unfortunately  this  is  not  true  for  typical  sequences  taken  from  a  moving 

wheeled  vehicle  where  it  is  common  to  have  objects  in  the  scene  passing  close  to  the  camera. 

The  presence  of  close  objects  violates  the  2D  motion  assumption,  but  this  model  can  still 
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be  used  if  we  are  able  to  restrict  ourselves  to  image  points  corresponding  to  distant  scene 

points. 

A  heuristic  rule  for  selecting  features  on  the  horizon  is  currently  being  used.  The  horizon 

is  a  very  strong  visual  cue,  present  in  almost  every  off-road  situation.  The  first  step  in 

feature  extraction  is  to  smooth  the  input  image  by  convolving  it  with  a  5  x  5  Gaussian  kernel 

operator.  Then  the  smoothed  image  is  convolved  again  with  a  5  x  5  Laplacian  kernel  operator. 

The  resulting  Laplacian  image  is  also  used  for  feature  tracking  and  also  thresholded.  The 

thresholded  image  is  divided  into  N  vertical  zones,  where  N  corresponds  to  the  number  of 

features  to  be  tracked.  Each  zone  is  searched  from  top  to  bottom,  and  the  topmost  feature 

is  selected  for  tracking. 

The  features  selected  in  frame  /<_!  can  be  tracked  to  frame  ft  by  a  multi-resolution 

refinement  scheme  using  parameter  estimation  proposed  in  [21].  Although  this  process  is  able 

to  produce  very  good  estimates  of  the  motion  parameters,  it  is  computationally  expensive 

since  it  uses  a  weighted  correlation  scheme  to  determine  the  best  feature  matches.  We  use 

another  similarity  measure  which  is  given  by  the  SSD  over  local  windows  (SSD  windows) 

centered  at  the  feature  points.  This  measure  is  computed  over  a  neighborhood  (search 

window)  around  the  candidate  matches  in  frame  ft,  and  the  point  which  returns  the  minimum 

SSD  is  selected  as  the  best  match. 

The  SSD  between  two  windows  of  size  W  =  (2io-l-l)  x  (2w-t-l)  centered  at  Pt-i  {x,  y)  6  ft-i 

and  Pt{u,v)  e  ft  is  given  by 

SSD  =  '^[{Pt-i{x  +  i,y  +  j)-Pt{u  +  i,v+jf],  ij^[-w,+w].  (11) 

ij 

The  use  of  Laplacian  images  for  feature  tracking  also  helps  to  reduce  the  sizes  of  the  SSD 

windows.  The  Laplacian  operator  enhances  the  regions  around  the  tracked  features  and 

smoothes  the  regions  of  constant  brightness  that  in  general  surround  the  edges.  Since  the 

Laplacian  operator  is  rotation  invariant,  edges  of  different  orientations  are  equally  enhanced 

so  that  the  Laplacian  images  are  not  affected  by  possible  rotations  of  the  input  images. 

Tracking  is  performed  in  a  hierarchical  fashion.  A  Laplacian  pyramid  L[t]  is  formed 

by  combining  several  reduced-resolution  Laplacian  images  of  frame  ft.  Each  level  of  the 

pyramid  will  be  denoted  by  L[t,l],  where  T[<,0]  is  the  Laplacian  image  of  the  original  frame 
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of  size  Z  (an  image  of  size  ̂   has  Z  x  Z  pixels).  The  size  of  an  arbitrary  pyramid  level  I 

is  determined  by  The  levels  of  the  pyramids  L\t  —  1]  and  L[t]  are  used  from  coarse  to 

fine  resolution,  where  each  new  processed  level  contributes  to  determining  the  position  of 

the  matching  feature. 

Assume  that  the  pyramids  have  ji  + 1  levels,  and  level  j  has  the  coarsest  resolution.  After 

the  selection  of  features  is  performed  using  Zr[f  —  1, 0],  they  are  scaled  down  to  level  —  1,  jf] 

and  used  to  determine  their  matches  in  For  a  feature  y)  of  L[t  —  1,  j],  a  search 

for  the  minimum  SSD  is  performed  over  a  search  window  of  size  S  =  (2s  +  1)  x  (2s  +  1) 

centered  at  the  pixel  Pt{x,y)  of  L[t,j].  Let  Pt{u,v)  be  the  selected  matching  point  for 

Pt-i{x,  y)..  Notice  that  the  maximum  displacement  supported  by  this  search  is  only  s  pixels. 

For  the  next  pyramid  level,  the  coordinates  of  these  pairs  are  scaled  up  by  a  factor  of  2. 

For  the  feature  PiZi{2x,2y),  the  search  for  the  minimum  SSD  is  now  performed  around  the 

pixel  P/”^(2u,2u).  This  process  is  repeated  until  the  finest  resolution  level  0  is  reached. 

Notice  that  since  the  displacement  is  doubled  after  every  level,  the  total  displacement  that 

this  algorithm  can  handle  can  be  very  large  even  for  small  values  of  s. 

2.1.5  Subpixel  Matching 

After  the  grid-to-grid  matches  are  obtained  from  the  hierarchical  search,  displacements  with 

subpixel  accuracy  can  be  easily  computed  for  the  finest  resolution  level  of  the  pyramid  using 

a  differential  method  [18,  21].  Subpixel  accuracy  is  necessary  to  eliminate  the  quantization 

error  introduced  when  the  images  are  digitized. 

If  a  feature  P^{u,  v)  has  offset  {Sx,  6y)  relative  to  (u,  u)  (assume  they  were  tracked  and 

registered  so  that  the  translation  {Sx,  Sy)  is  very  small),  i.e.,  Pt{u,  v)  =  P°_i(u  -Sx,v-  Sy), 

the  frame  difference  can  be  expanded  as 

d{u,v)  =  Pt-i{u,v)-P^{u,v)  =  P^_^{u,v)-P^_i{u-Sx,v-6y) 

ax  ay 
(12) 

The  terms  dP^_^{u,v)/dx  and  dP^_^{u,v)/dy  can  be  approximated  by  forward  differ¬ 

ences,  so  that  for  a  small  neighborhood  around  P°_^{u,v)  of  size  W  =  (2u;  +  1)  x  {2w  +  1) 
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there  will  be  W  simultaneous  equations 

D  =  GA  (13) 

where  D  is  the  known  difference  of  intensities  vector  u)  —  P°(u,  u)),  G  is  the  known 

gradient  matrix  and  A  is  the  unknown  vector  of  translations,  so  that 

dx  dy 

dP°_,{w,w)  dP°_,{vj,w) 
dx  dy 

The  system  of  equations  in  (13)  can  be  solved  by  A  =  {G^G)~^G^D. 

When  the  feature  pairs  with  subpixel  accuracies  become  available,  the  motion  parameters 

are  computed  using  (8)  and  (10). 

2.1.6  Motion  Compensation 

The  result  of  the  motion  estimation  process  described  in  the  last  section  is  an  estimate  of  the 

motion  between  two  frames.  The  objective  of  motion  compensation  is  to  maintain  a  history 

of  the  motion  estimates  to  create  a  stabilized  sequence. 

The  manner  in  which  motion  estimation  and  compensation  are  performed  defines  the 

structure  of  the  stabilization  algorithm.  We  have  compared  two  possible  implementations: 

one  that  always  uses  two  consecutive  frames  from  the  input  image  sequence  to  estimate 

the  motion  parameters,  termed  the  frame- to-frame  algorithm  (FFA),  and  a  second  one  that 

keeps  a  reference  image  and  uses  it  to  estimate  the  motion  between  the  reference  and  the 

current  input  image,  termed  the  frame-to- reference  algorithm  (FRA).  We  describe  the  first 

algorithm  here. 

2.1.7  The  Frame-to-Frame  Algorithm 

The  block  diagram  of  the  frame-to-frame  algorithm  is  shown  in  Figure  2.  The  Laplacian 

L\t\  is  built  from  the  input  camera  image  and  sent  to  a  delay  buffer  storage  that  keeps  the 

previous  pyramid  L\t  —  1]  for  the  estimation  process.  The  feature  detection/tracking  module 



Figure  2:  Block  diagram  of  the  frame- to-frame  algorithm  (FFA) 

uses  L\t  —  1,0]  to  extract  features  that  are  used  in  hierarchical  tracking.  After  the  grid- 

to-grid  matches  are  found,  this  module  computes  the  subpixel-accuracy  displacements  that 

are  used  by  the  motion  estimation  module  to  compute  the  interframe  motion.  The  motion 

compensation  block  must  then  compute  the  total  motion  of  the  camera  by  combining  all  the 

interframe  estimates  over  time  (since  it  started  running,  e.g.,  t  =  0).  The  total  motion  is 

used  to  warp  the  current  frame  /<,  and  the  result  of  this  operation  is  sent  to  the  monitor. 

In  this  way,  since  all  frames  of  the  sequence  are  being  warped  back  to  T[0, 0],  the  resulting 

sequence  is  stabilized.  To  combine  the  motion  parameters,  assume  that  the  transformation 

used  to  warp  ft-\  is 

^  Z[0,01  '' 

/ 

^  y[0,0] ) 

=  <So 

\ 

cos  00  —  sin  00 

sin  00  cos  00 

^  A:[t-i,o]  ̂  

(  Y[t-1,0]  ) 

-f 

(  AXo 

^  AFo 

and  the  interframe  motion  is 

''  A:(t-i,o] '' 

=  5t-l ^  cos0t_i  —  sin0t_i + 

^  AAt_x  ̂  

(^r[(-i,o) ) ^  sin0t_i  cos0t_i  y 

AF.x  j 

(15) 

(16) 

where  (Aft,  i],F[t,  i])*  are  the  image  coordinates  of  L\t,i].  Substituting  (16)  into  (15),  it  is 

straightforward  that  the  combined  motion  parameters  Wt  =  (AAt,  AF,  0t,<St)*  until  frame 
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ft  will  be 

( 
Wt 

AYt 
Ot 

{  St  j 

^  Sq  cos  0oAXt_i  —  Sq  sin  ©oAlj-i  +  AXq 

Sq  sin  0oAAi^t_i  +  (So  cos  0oA]r^_i  +  Alb 

00  +  04-1 

y  <So  X  S4_i  j 

(17) 

Since  features  are  tracked  between  consecutive  frames,  they  do  not  need  to  be  extracted 

in  every  frame.  Figure  3  shows  a  simple  scheme  where  the  feature  extraction  algorithm  is 

applied  to  every  other  frame  instead  of  every  frame.  Suppose  that  the  system  uses  frame  ft 

to  extract  features.  This  set  of  features  can  be  used  for  tracking  features  backward  between 

ft  and  ft-i-  When  /4+1  is  acquired,  the  same  set  can  be  used  for  forward  tracking  between 

ft  and  /t+i.  Finally,  when  ft+2  comes  in,  new  features  must  be  extracted  and  the  process 

continues  with  backward  tracking. 

Backward  Tracking  Forward  Tracking 

Figure  3:  Feature  detection  and  tracking 

This  strategy  is  very  simple  to  implement  and  just  requires  a  slightly  more  complex 

control  structure.  The  forward  tracking  is  done  as  described  previously,  but  a  few  changes 

must  be  made  for  backward  tracking.  First,  the  same  tracking  algorithm  is  used  by  simply 

switching  ft  with  /4_i  and  the  motion  based  on  the  inverted  pairs  is  computed.  This  process 

estimates  the  motion  from  ft  to  ft-i,  but  instead  we  need  to  compute  the  forward  motion 

11 



from  ft~i  to  ft.  This  can  be  done  by 

/ 

Yt 

=  5* 

V 

cos  (dt 

sin  0 

0^  -  sin  Qt\  ̂  Xt^i  I  ̂  J  ̂Xt  I 

0,  COS0,  )  )  \XYt) 
\  /  \ 

h-']=sr 
'  cos  Qt  sin  0t <1 1 

1  ) —  sin  0t  cos  0t  j 

-  at*  ; 

/  \  f  y 

From  (18)  it  is  clear  that  the  motion  parameters  from  ft-j  to  ft  can 

of  the  backward  motion  parameters  by 

(18) 

be  written  in  terms 

AX,.,  '1 

^  -(cos0<AA:i-f  sin0tAy«)/5t  ̂  

1 < -(-  sin  QAXt  -h  cos  0tAy  )/«^t 
0.-1 

-0t 

S<-1  ) 

^  1/<S.  j 

(19 

If  the  motion  can  be  reliably  estimated  for  large  feature  displacements,  it  is  very  simple 

to  extend  the  backward/forward  estimation  scheme  to  utilize  larger  steps  between  feature 

extractions. 

Due  to  the  dynamic  nature  of  the  problem,  the  scene  as  a  whole  is  under  constant  mod¬ 

ification,  so  that  after  some  relatively  short  time  the  original  frame  may  not  have  anything 

in  common  with  the  current  frame.  An  important  characteristic  of  this  algorithm  is  that  it 

continues  to  compute  the  global  motion  even  in  these  situations  since,  in  general,  the  overlap 

between  two  consecutive  frames  is  considerable.  Of  course  the  warping  of  the  current  frame 

using  this  global  motion  takes  the  image  completely  out  of  view.  In  such  cases,  the  user  in¬ 

terface  module  allows  the  user  to  reinitialize  the  system,  so  that  another  reference  is  taken. 

It  is  also  possible  to  set  motion  limits,  so  that  whenever  the  overlap  between  the  reference 

and  the  current  frame  is  not  large  enough,  the  system  can  reset  itself  automatically. 

When  the  motion  of  the  camera  is  predominantly  lateral,  i.e.,  the  camera  is  moving 

perpendicular  to  its  optical  axis,  the  construction  of  a  mosaic  has  some  advantages  [2]. 

It  offers  better  visualization  and  also  helps  in  the  estimation  process.  Unfortunately,  this 

technique  does  not  help  for  forward  (or  backward)  motion,  i.e.,  motion  along  the  optical 

axis,  which  is  considerably  more  natural  than  lateral  motion. 
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Besides  reinitialization,  the  FFA  can  exhibit  drifts  due  to  the  accumulation  of  error, 

which  although  very  small  between  frames,  can  become  considerable  after  long  periods  of 

time. 

2.1.8  Hardware  Description 

The  algorithm  was  implemented  using  a  MaxVideo  200  board  connected  to  a  SUN  SPARC- 

station  20/612  via  a  VME  bus  adaptor.  The  MV200  is  a  parallel  pipeline  image  processing 

hardware  system  manufactured  by  Datacube  Inc.  The  system  is  basically  composed  of  the 

following  dedicated  devices: 

1.  Architectural  Adaptor  Version  B  (AB  device):  This  provides  a  VME  bus  interface  with 

the  host  computer,  serving  as  the  mother  board  for  all  the  other  devices.  It  allows  data 

path  programmability  to  and  from  all  other  MaxVideo  processing  resources  through  a 

20  MHz  crosspoint  switch. 

2.  Advanced  Memory  (AM  device):  This  provides  basic  image  storage  capabilities.  One 

AB  device  can  host  up  to  6  AM  devices  (MemOO  to  Mem05),  each  having  either  1,  4  or 

16  MBytes  of  physical  storage.  Our  board  has  6  AM  devices  with  4  MBytes  of  physical 

memory  each.  These  devices  are  typically  used  as  buffers  for  several  image  processing 

operations,  including  image  acquisition  and  display. 

3.  Analog  Generator  (AG  device):  This  provides  display  and  graphics  overlay  capabilities. 

It  can  be  programmed  so  that  it  can  be  connected  to  many  different  types  of  monitors. 

4.  Advanced  Pipeline  Processor  (AP  device):  This  processor  can  perform  three  basic  sta¬ 

tistical  operations  (histograming,  feature  listing,  and  modified  Hough  transform),  mor¬ 

phological  operations,  and  neighborhood  multiply  and  accumulate  (NMAC)  operations 

that  can  perform  convolutions  of  an  entire  image  with  an  (up  to)  8  x  8  convolution 

mask.  Our  AP  device  also  hosts  a  second-order  polynomial  warper  module  that  is  able 

to  perform  second-order  polynomial  transformations  in  real  time. 

5.  Analog  Scanner  (AS  device):  This  device  digitizes  the  analog  input  video  signal,  storing 

the  image  in  its  own  physical  storage  element. 
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6.  Arithmetic  Unit  (AU  device):  This  device  is  able  to  perform  several  linear,  non-linear, 

and  statistics  processing  operations. 

Each  device  consists  of  a  variety  of  processing  elements,  including  input/output  ports, 

memory  elements,  multiplexers,  look-up  tables,  etc.  The  MV200  image  processing  system 

comes  with  ImageFlow,  a  collection  of  C  routines  that  controls  and  connects  these  processing 

elements.  The  task  of  the  programmer  is  to  set  the  control  parameters  and  connect  all  the 

necessary  elements  in  order  to  perform  the  desired  computations  on  the  input  image  stream. 

The  connection  of  elements  is  done  within  the  elements  of  one  device.  Connections  be¬ 

tween  devices  are  made  through  the  crosspoint  switch  of  the  AB  device.  The  basic  processing 

unit,  the  'pipe,  that  defines  a  path  between  two  memory  storage  elements  (typically  from  the 

AM  device).  To  define  a  pipe,  all  elements  within  the  pipe  must  be  connected,  including  the 

connections  between  devices,  and  the  control  parameters  of  each  element  must  be  appropri¬ 

ately  set.  After  the  pipe  is  ready,  it  can  be  fired  (once  or  continuously),  so  that  the  data 

from  one  memory  element  flows  through  the  pipe  to  the  second  memory  element,  where  the 

processed  data  can  be  accessed  and  further  processed. 

For  example,  a  simple  convolution  can  be  defined  by  three  pipes;  One  pipe  connecting 

the  AS  device  (which  is  connected  to  a  camera)  to  a  memory  storage  device,  say  Mem05; 

a  second  pipe  for  the  convolution,  connecting  Mem05  to  MemOO  through  the  convolution 

element  in  the  AP  device;  and  a  third  pipe  for  display  purposes,  connecting  the  result  of  the 

convolution  stored  in  MemOO  to  the  AG  device  (which  is  connected  to  a  monitor). 

2.1.9  Implementation  of  the  Frame-to-Frame  Algorithm 

Figure  4  shows  a  block  diagram  of  the  Datacube  implementation  of  the  frame-to-frame 

algorithm.  The  simplicity  of  the  system  contributes  to  its  fast  performance.  We  initially 

built  all  the  modules  in  C-|-+  for  simulation  purposes  and  then  ported  the  appropriate 

modules  to  the  Datacube.  To  optimize  performance,  communication  between  the  Datacube 

and  the  host  computer  (the  SUN  workstation)  was  kept  to  a  minimum. 

The  acquisition  pipe  stores  frames  of  size  512  x  480  continuously  into  Mem05;  they 

are  digitized  by  the  AS  device.  A  one-shot  pipe  links  Mem05  to  Mem04  through  the  AP 
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Figure  4:  Block  diagram  of  the  Datacube  implementation  of  the  FFA 

convolution  element,  loaded  with  a  5  x  5  Gaussian  convolution  kernel.  The  input  port  of 

Mem04  is  set  to  subsample  the  input  by  a  factor  of  two.  To  continue  the  subsampling 

process,  a  looping  pipe  around  Mem04  creates  several  subsampled  Gaussian  images,  until  a 

32  X  30  image  size  is  reached.  To  avoid  superposition  with  finer  resolution  images,  the  coarser 

images  must  be  carefully  placed  into  Mem04.  All  images  in  Mem04  are  then  convolved  with 

a  5  X  5  Laplacian  kernel  and  stored  in  Mem03.  The  32  x  30,  64  x  60  and  128  x  120  images 

are  sent  to  the  host  computer.  Features,  typically  five,  are  extracted  from  the  128  x  120 

image,  and  tracked  within  subpixel  accuracy.  We  allow  for  local  displacements  of  ±3  on 

each  level,  so  that  the  system  is  able  to  support  a  maximum  displacement  of  ±21  pixels  in 

the  128  X  120  image.  After  the  computation  of  the  motion  parameters,  they  are  used  to  set 

the  warper  module  in  the  AP  device.  The  128  x  120  image  stored  in  Mem04  is  warped  and 

sent  to  MemOO.  Finally  the  result  is  displayed  by  the  pipe  from  MemOO  to  the  AG  device. 

If  the  parameters  are  appropriately  scaled,  the  warper  can  be  easily  set  to  warp  any  image, 

including  the  original  one  stored  in  Mem05.  The  host  also  controls  the  forward/backward 

scheme  and  the  user  interface. 

15 



2.1.10  Experimental  Results 

This  section  presents  experimental  results  obtained  from  a  video  sequence  taken  from  the 

NIST  HMMWV.  Unfortunately,  still  images  are  not  the  most  appropriate  way  to  display  the 

results  of  such  a  dynamic  process.  Those  readers  with  access  to  www  browsers  may  want  to 

look  at  the  MPEG  movies,  containing  a  few  original  and  stabilized  sequence  samples,  that 

axe  available  at: 

http:/ /www.cfar.umd.edu/''carlos/stabilization.html. 

Figure  5:  Stabilization  results. 

Since  our  stabilization  technique  is  supposed  to  stabilize  the  entire  reference  image,  the 

difference  between  two  stabilized  frames  should  be  close  to  zero  everywhere;  this  is  not 

true  in  the  case  of  the  original  sequence  due  to  the  motion  of  the  camera,  which  causes 

misalignments  in  the  images.  The  top  of  Figure  5  shows  two  stabilized  frames  and  their 

differences,  while  the  bottom  shows  the  corresponding  frames  from  the  original  sequence.  For 

illustration  purposes,  the  differences  were  thresholded,  so  that  the  black  spots  correspond 

to  high-intensity  discrepancies.  In  this  case,  the  number  of  black  spots  in  the  difference  of 

images  can  be  regarded  as  an  error  measure  that  stabilization  tries  to  minimize. 

The  original  sequence  was  recorded  from  the  NIST  HMMWV  while  moving  forward. 

That  is  the  reason  for  the  shrinking  in  the  stabilized  frames.  It  can  be  seen  that  objects 

closer  to  the  camera  (e.g.,  a  car  to  the  left  and  a  lamppost  to  the  right)  are  quite  noticeable 16 



(the  error  is  large)  in  the  stabilized  sequence  because  their  motion  does  not  fit  the  2D  model, 

but  it  is  clear  that  the  region  around  the  horizon  practically  disappears  (the  error  is  small) 

in  the  difference  image.  Observe  that  since  we  are  tracking  distant  features,  the  system  is 

quite  robust  to  perspective  distortions  that  occur  in  other  parts  of  the  image. 

Figure  6:  Stabilization  results  for  off-road  navigation. 

Figure  6  shows  another  part  of  the  tape  where  the  vehicle  is  navigating  on  rough  terrain. 

Again,  the  error  is  much  smaller  around  the  regions  close  to  the  horizon,  but  high  on  the 

bottom  regions  due  to  the  different  image  flow  of  the  grass  pattern,  which  is  not  appropriately 

compensated  by  the  2D  model.  The  results  are  apparently  good  enough  for  visualization,  but 

segmenting  independently  moving  objects  directly  from  the  difference  of  stabilized  frames  is 

not  straightforward,  mainly  due  to  regions  that  do  not  fit  the  2D  motion  assumption,  since 

they  are  also  segmented  after  the  difference  image  is  thresholded.  Temporal  median  filters 

combined  with  velocity-tuned  filters  are  used  in  [9]  to  detect  independently  moving  objects 

(IMOs).  Qualitative  approaches  [10,  11]  to  the  detection  of  IMOs  could  also  benefit  from 

electronic  image  stabilization. 

During  these  tests  the  system  was  set  to  use  search  windows  and  SSD  windows  of  the 

same  size  (7  x  7).  For  these  settings,  the  system  is  able  to  process  about  20  frames  per 

second.  Table  1  shows  how  the  frame  rate  degrades  when  the  search  window  is  increased 

and  the  SSD  windows  are  kept  constant.  Our  host  computer  is  running  SUN-OS  4.1,  which  is 
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not  the  most  appropriate  operating  system  for  real-time  applications.  Thus,  for  each  search 

window,  three  trials  of  at  least  1000  frames  were  processed  and  the  average  result  is  shown. 

Table  1:  Performance  evaluation  of  search  window  sizes. 

Local  Search Global  Search Frame  Rate Image  Velocity 

[pixels] [pixels] 

[frames /s] 
[pixels /sec] 

±1 ±  7 21.8 152.6 

±2 ±  14 20.8 291.2 
±3 

±  21 19.7 413.7 

±4 ±  28 18.4 515.2 
±5 ±  35 17.0 595.0 

Hansen  et  al. ±  32 
10 

320 

It  is  possible  to  consider  the  frame  rate  alone  as  a  basis  for  comparison,  but  frame  rate  and 

robustness  to  large  pixel  displacements  can  be  combined  by  considering  the  maximum  pixel 

velocities  supported  by  the  system.  The  rightmost  column  in  Table  1  gives  the  maximum 

pixel  velocities  that  each  setting  is  able  to  process.  This  might  suggest  that  the  system  is 

more  robust  when  set  to  search  displacements  of  magnitude  5  instead  of  3,  because  despite 

the  loss  in  frame  rate  there  is  a  considerable  gain  in  feature  velocity  that  the  system  is 

able  to  track.  Unfortunately,  when  the  search  space  is  increased,  the  narrow  SSD  window 

being  used  is  more  likely  to  find  a  false  match.  Increasing  the  SSD  window  provides  better 

discrimination  between  features  and  decreases  the  probability  of  false  matches.  On  the  other 

hand,  the  frame  rate  drops  considerably. 

The  last  row  of  Table  1  shows  the  performance  of  the  stabilization  system  presented  by 

Hansen  et  al.  [5].  Their  system  is  able  to  stabilize  images  with  velocities  of  320  pixels  per 

second,  running  at  10  frames  per  second.  Despite  the  better  performance  figures  of  our 

system  for  a  search  window  of  size  ±3,  we  expect  that  their  system  may  be  more  precise 

in  the  computation  of  the  motion  parameters  since  several  local  patches  contribute  to  the 

refinement  and  estimation  of  the  parameters,  while  we  use  a  very  limited  set  of  feature 

points  that  are  simply  tracked  and  used  for  estimation.  On  the  other  hand,  our  technique 

can  handle  sequences  with  regions  that  do  not  fit  the  2D  model  if  the  features  are  constrained 

to  distant  points  of  the  scene.  Also,  for  real-time  applications,  faster  frame  rates  (closer  to 
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video  frame  rate)  might  be  more  appropriate. 

The  fast  frame  rate  was  obtained  in  part  by  reducing  the  number  of  features  to  be  tracked 

(typically  set  to  5).  This  explains  why  the  system  is  so  sensitive  to  false  matches  and  bad 

features  (features  in  regions  that  do  not  fit  the  2D  model).  Assuming  that  translation  is 

dominant,  the  flow  of  distant  (or  vanishing)  points  should  be  very  small.  So,  to  reduce 

the  sensitivity  of  the  system  to  bad  features  and  false  matches,  the  motion  parameters  are 

computed  based  on  the  three  features  with  minimal  displacements. 

2.1.11  Detection  of  Independently  Moving  Objects 

Image  stabilization  renders  the  background  of  the  image  approximately  stationary.  In  order 

to  overcome  the  effects  of  residual  motions,  we  implemented  a  temporal  median  filter.  This 

filter  creates  a  median  image  that  is  composed  of  the  median  values  of  the  last  k  frames.  In 

a  sequence  of  pixel  gray  levels  from  k  frames,  the  gray  levels  arising  from  an  independently 

moving  object  tend  to  be  outliers  with  respect  to  the  median  of  the  sequence,  so  that  they 

at  least  partially  disappear  from  the  median  image.  A  simple  image  differencing  scheme  can 

then  be  applied  to  detect  independent  motion  on  a  frame-by-frame  basis. 

A  filtered  image  is  a  binary  image  obtained  by  thresholding  the  difference  between  the 

median  image  and  the  current  frame.  This  process  tends  to  erase  the  background  and  high¬ 

light  the  locations  of  independently  moving  objects.  These  filtered  images  still  contain  noise 

(due  to  imperfect  stabilization)  and  spots  corresponding  to  close  scene  objects  that  appear 

to  move  due  to  motion  parallax.  Velocity-tuned  filters  are  used  to  reject  the  stabilization 

noise;  motion  parallax  spots  are  also  rejected  if  their  apparent  motion  in  the  image  is  out  of 

the  velocity  range  for  which  the  filter  is  tuned. 

Assume  that  a  filtered  image  /,  contains  several  spots,  and  we  want  to  select  only  those 

that  move  linearly  at  a  rate  of  p  pixels  per  processed  frame.  If  such  spots  also  appeared  in  the 

previous  frame,  /j_i ,  by  the  time  frame  /,  is  captured  these  spots  must  have  moved  p  pixels 

away  from  their  /t_i  positions  and  are  therefore  located  in  frame  /,  somewhere  on  circles.,  p 

pixels  in  radius,  centered  at  their  /,_i  positions.  If  we  select  the  pixels  that  correspond  to 

the  intersections  between  the  spots  of  fi  and  the  spots  generated  by  replacing  the  spots  of 
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/i_i  by  the  appropriate  circles  (predicted  positions),  we  obtain  good  candidates  for  regi
ons 

moving  at  p  pixels  per  frame.  This  scheme  can  be  extended  to  include  more  than  two  frames, 

since  spots  in  frame  /j_2  should  be  2p  pixels  away,  and  spots  in  frame  fi-j  should  be  jp  pixels 

away.  Implementation  issues  regarding  these  filters  are  given  in  [9]. 

2.1.12  Experimental  Results 

Figure  7  shows  a  frame  of  a  video  sequence  taken  from  a  moving  vehicle  and  Figure  8 

shows  the  thresholded  difference  between  the  four-frame  temporal  median  and  the  stabilized 

instance  of  that  frame.  Finally,  Figure  9  shows  the  stabilized  frame  superimposed  on  the 

output  of  the  velocity-tuned  filters  integrated  over  four  frames. 

Figure  7:  Frame  from  video  sequence. 

Figure  8:  Thresholded  difference  between  temporal  median  and  stabilized  frame. 
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Figxire  9:  Stabilized  frame  with  superimposed  moving  object  regions. 

2.2  University  of  Rochester 

(Randal  Nelson,  Rajesh  RN.  Rao) 

Work  at  the  University  of  Rochester  addressed  the  RSTA  goal  of  detecting  and  track¬ 

ing  independently  moving  objects  from  a  moving  platform.  The  detection  of  independently 

moving  objects  is  a  critical  task  for  RSTA  subsystems.  Because  objects  that  move  inde¬ 

pendently  represent  possible  threats,  it  is  important  to  flag  them  as  rapidly  as  possible  and 

then  track  them  so  that  identification  systems  can  be  brought  to  bear  on  them.  We  have 

been  engaged  in  a  project  whose  goal  is  to  design,  implement,  and  test  a  general  framework 

for  utilizing  visual  motion  for  the  detection  and  recognition  of  events  and  objects.  Overall, 

we  have  been  developing  a  three-step  process  for  motion  recognition  that  includes  detection, 

tracking,  and  recognition  phases.  Of  these  steps,  the  detection  and  tracking  components 

are  of  most  immediate  interest  to  the  RSTA  demos,  and  we  have  been  engaged  in  porting 

previously  developed  algorithms  for  these  aspects  of  the  problem  to  hardware  on  the  NIST 

vehicle,  and  evaluating  the  algorithms  under  various  field  conditions.  The  hardware  and 

mechanics  on  the  NIST  vehicle  are  consistent  with  those  of  the  current  RSTA  vehicles,  and 

thus  provide  a  valid  testbed  relative  to  RSTA  demo  goals. 

The  fast  detection  of  potentially  significant  motion  events  is  based  on  identifying  viola¬ 

tions  of  qualitative  rigid-world  constraints.  This  provides  a  uniformly  applicable  strategy 

by  which  small  regions  of  the  scene  can  be  selected  for  more  thorough  inspection.  In  pre¬ 

vious  work,  we  produced  real-time  algorithms  for  detecting  independently  moving  objects 

from  a  moving  platform  [10].  These  techniques  are  more  general  than  those  based  on  affine 



stabilization  of  the  visual  field,  and  can  function  in  situations  containing  substantial  motion 

parallax  at  different  depths,  and  skewed,  non-planar  radial  flow  (such  as  that  produced  in 

the  near  field  during  locomotion  through  hilly  terrain),  which  cause  problems  for  the  affine 

methods.  They  can  thus  serve  to  augment  affine  stabilization  algorithms,  which  have  pre¬ 

viously  demonstrated  their  value  in  regimes  where  they  are  valid.  We  have  ported  these 

algorithms  to  a  platform  consistent  with  the  hardware  on  the  RSTA  vehicles,  and  have  eval¬ 

uated  their  performance,  both  in  isolation  and  in  combination  with  low-level  stabilization 

algorithms  developed  at  Maryland. 

The  tracking  step  involves  stabilization  of  the  area  of  interest  through  active  visual  pro¬ 

cesses  such  as  fixation  and  tracking  to  place  the  motion  of  interest  in  a  canonical  form  that 

facilitates  the  final  recognition  procedure.  The  techniques  of  most  immediate  interest  for 

RSTA  involve  the  tracking  of  independently  moving  rigid  objects.  We  have  developed  real¬ 

time  algorithms  for  instantiating  and  maintaining  hypotheses  about  the  positions,  extents, 

and  motions  of  such  objects  on  the  basis  of  the  output  from  the  independent  motion  detec¬ 

tion  system.  We  have  also  developed  techniques  for  accomplishing  this  for  objects  that  move 

in  a  complex  manner,  such  as  people  or  animals  [13]. 

The  identification  step  locates  regions  of  interest  via  a  more  detailed  analysis  of  motion. 

We  have  developed  techniques  based  on  temporal  texture  analysis,  where  we  extract  statistical 

spatial  and  temporal  features  from  approximations  to  the  motion  field  and  use  techniques 

analogous  to  those  developed  for  gray-scale  texture  analysis  to  classify  regional  activities. 

Some  results  in  this  area  are  described  in  [11].  In  a  second  approach,  which  we  term  activity 

recognition,  we  use  the  spatial  and  temporal  arrangement  of  motion  features  in  conjunction 

with  simple  geometric  image  analysis  to  identify  complexly  moving  objects  such  as  machinery 

and  locomoting  people  and  animals  [14].  The  remainder  of  this  section  concentrates  on  the 

motion  detection  processes. 

Detection  of  moving  objects  is  of  critical  importance  to  biological  and  robotic  systems, 

both  because  such  objects  are  frequently  of  primary  interest  to  the  system,  and  because  deal¬ 

ing  with  them  involves  hard  real-time  constraints — the  world  won’t  wait  while  you  think.  A 

method  of  detecting  independent  motion,  or  motion  having  certain  other  qualitative  char¬ 

acteristics  such  as  periodicity,  is  thus  valuable  as  a  method  for  directing  more  sophisticated 
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(and  costly)  processing  to  areas  where  it  can  be  most  effectively  utilized. 

In  previous  work,  we  developed  methods  for  detecting  three  qualitative  types  of  motion. 

The  first  technique,  which  we  term  constraint  ray  filtering,  provides  a  robust  method 

of  detecting  independently  moving  objects  from  a  moving  platform  when  information  is 

available  about  the  platform  motion  [10].  The  method  is  based  on  the  observation  that  the 

projected  motion  at  any  point  on  the  image  sphere  is  constrained  to  lie  on  a  half  line  (ray)  in 

local  velocity  space  whose  parameters  depend  only  on  the  observer’s  motion  and  the  location 

of  the  image  point.  The  second  method,  termed  animate  motion  detection,  allows  rapid 

detection  of  animate  objects  with  no  information  about  the  movement  of  the  platform  [10]. 

It  is  based  on  the  observation  that  animate  moving  objects  typically  maneuver,  that  is,  they 

or  their  component  parts  follow  trajectories  for  which  the  projected  velocity  changes  rapidly 

compared  to  the  velocity  change  due  to  self-motion.  The  third  method  allows  detection 

and  tracking  of  objects  whose  motion  has  a  periodic  component,  such  as  walking  or  running 

animals,  oscillating  machinery,  etc.  [13].  It  is  based  on  a  Fourier  transform  technique. 

These  techniques  can  be  used  to  isolate  motion  for  identification  by  later  recognition 

processes.  The  responses  of  the  different  qualitative  detectors  yield  an  indication  of  the  sort 

of  recognition  process  that  should  be  assigned  to  the  movement  of  interest.  For  example, 

detection  of  local,  highly  periodic  movement  would  suggest  the  use  of  a  phase-based  struc¬ 

tural  classifier,  while  a  distributed,  non-periodic  motion  would  suggest  the  use  of  temporal 

texture  techniques. 

The  first  two  techniques  were  originally  implemented  as  real-time  systems  on  Datacube 

series  10  hardware,  and  demonstrated  in  a  laboratory  setting.  Of  these,  the  first,  constraint 

ray  filtering,  is  of  the  most  immediate  interest  to  the  RSTA  goal  of  detecting  moving  vehicles. 

We  have  ported  this  algorithm  to  hardware  on  the  NIST  vehicle,  which  is  compatible  with  the 

hardware  on  the  Martin  Denver  demo  vehicles,  and  initiated  the  evaluation  of  the  algorithm 

using  outdoor  driving  sequences  acquired  from  both  the  NIST  vehicle  and  other  vehicles. 

Representative  results  of  the  moving  object  detection  algorithm  are  illustrated  in  Fig¬ 

ures  10  a-b.  Figure  10a  shows  a  frame  in  a  video  sequence  acquired  from  a  forward  moving 

mobile  platform.  The  independently  moving  objects  are  the  cars  moving  left  to  right  near 

the  horizon.  Figure  10b  shows  the  superposition  of  the  pixels  detected  by  the  independent 
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motion  detector  onto  the  video  frame.  These  pixels  lie  on  the  car  moving  across  the  image. 

Input  frame  Overlayed  image 

Figure  10:  (a)  Original  image,  (b)  Independently  moving  pixels  overlaid  on  (a). 

Theoretical  analysis  of  the  algorithm  indicates  that,  although  the  underlying  technique 

is  capable  of  detecting  independent  motion  in  an  arbitrary  environment  under  arbitrary 

motion,  the  instantiation  of  the  algorithm  on  the  Maxvideo  hardware  has  certain  limitations. 

In  particular,  the  choice  of  a  first-order  gradient-based  flow  estimation  technique  is  dictated 

by  the  operations  that  the  Maxvideo  performs  efficiently  (namely,  convolution),  and  this 

limits  the  accuracy  of  the  motion  field  estimation.  Further  analysis  indicates  that  when  the 

magnitude  of  the  motion  due  to  vehicle  movement  exceeds  the  magnitude  of  the  independent 

motion  by  more  than  a  factor  of  two,  detection  is  unreliable.  We  can  recognize  this  situation 

and  avoid  false  positives,  but  genuine  independent  motion  may  then  go  undetected. 

The  theoretical  performance  is  borne  out  by  field  tests.  When  driving  on  roads,  or  slowly 

on  relatively  smooth  terrain,  the  algorithm  detected  other  moving  vehicles  in  a  variety  of 

situations.  However,  at  high  velocity,  and  over  rough  off-road  terrain,  the  detection  limit  is 

frequently  exceeded,  and  independently  moving  objects  are  missed.  Further  analysis  revealed 

that  this  effect  is  primarily  due  to  rapidly  changing  vehicle  pitch,  with  smaller  effects  from 

roll  and  yaw. 

Two  approaches  can  be  used  to  resolve  this  situation.  The  first  is  to  use  a  more  accurate 24 



motion  estimation  algorithm.  However,  this  is  probably  not  practical  in  real  time  using 

the  existing  hardware,  though  we  have  explored  the  use  of  a  multi-resolution  gradient-based 

algorithm.  (Advances  in  hardware  may  change  this  picture  for  the  next  generation  of  vehicles, 

but  for  the  moment  we  are  limited  to  the  current  Maxvideo  system).  The  second  approach 

notes  that  the  dominant  source  of  large  motions  that  swamp  the  detection  algorithm  is 

vehicle  rotation,  which  is  removable  by  stabilization  techniques  of  a  sort  that  have  already 

been  demonstrated. 

We  have  instantiated  the  second  approach,  using  several  stabilization  algorithms  devel¬ 

oped  at  the  University  of  Maryland  as  pre-processors  to  the  motion  detection  system.  The 

different  algorithms  were  compared,  and  the  best  of  them  selected  for  our  demonstration. 

We  have  also  developed  a  predictive  tracker  that  will  use  the  (pixel  map)  output  of  the  inde¬ 

pendent  motion  detection  system  to  circumscribe  and  track  potential  target  objects.  These 

regions  of  interest  will  ultimately  serve  as  inputs  to  the  next  phase  of  the  system  where 

recognition  and  higher-level  planning  are  performed. 

2.3  University  of  Pennsylvania 

(Ruzena  Bajcsy,  Ulf  Cahn  von  Seelen) 

The  University  of  Pennsylvania’s  research  was  concerned  with  camera  control  for  tracking 

acquired  targets.  The  controlled  axes  include  mechanical  degrees  of  freedom  (pan,  tilt)  as 

well  as  an  optical  degree  (zoom).  The  hardware  platform  consists  of  a  TRC  BiSight  binocular 

camera  platform  controlled  by  a  PMAC-VME  motion  controller  that  is  connected  to  a  Sun 

workstation  via  shared  memory. 

While  object  tracking  by  panning  and  tilting  a  camera  is  well  known,  the  use  of  zoom 

in  tracking  is  largely  unexplored.  For  RSTA  on  the  Move  we  want  to  maximize  the  spatial 

resolution  of  the  tracked  object  while  maintaining  acquisition.  This  involves  optimizing  the 

tradeoff  between  spatial  resolution  and  tracking  performance.  The  closer  the  camera  zooms 

in  on  the  target,  the  faster  the  target  moves  in  the  image,  and  the  harder  it  becomes  to 

maintain  acquisition  of  it. 

To  our  knowledge,  there  exist  only  a  few  publications  that  deal  with  the  control  of  zoom 
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for  tracking.  In  [7]  the  zoom  is  used  to  achieve  a  desired  object  image  size.  A  fuzzy  controller 

combines  estimates  of  the  diagonal  extent  of  the  object,  the  variance  of  the  object  velocity, 

and  the  confidence  of  the  shape  estimate  to  compute  a  suitable  focal  length.  The  influence 

of  the  velocity  variance  ensures  that  the  camera  does  not  zoom  in  too  closely  if  an  object’s 

motion  varies  greatly,  in  order  to  safely  maintain  acquisition. 

In  [6]  the  authors  use  a  robot  arm  and  camera  zoom  to  achieve  a  desired  image  feature 

configuration.  The  focus  of  the  work  is  on  integrating  the  zoom  into  the  control  as  a  redun¬ 

dant  mechanical  degree  of  freedom,  as  the  authors  assume  that  the  image  Jacobian  and  thus 

the  3D  positions  of  the  image  features  in  the  world  are  known.  This  assumption  abstracts 

from  the  main  problem  of  using  zoom  in  tracking,  namely  finding  an  image-based  measure 

on  which  to  servo  the  focal  length. 

In  the  PennEyes  system  [8]  we  have  used  various  image-based  measures  to  maintain  the 

apparent  size  of  a  target  in  an  image.  In  the  current  version  we  use  cross- correlation  to 

identify  the  target.  This  approach  is  more  general,  but  it  does  not  provide  a  ready  estimate 

of  the  apparent  target  size.  We  work  with  the  object  distance  instead,  which  we  estimate 

by  triangulation  from  the  two  camera  views.  Using  our  calibration  of  the  zoom  lens,  we  can 

compute  a  new  focal  length  when  the  target  distance  changes  so  that  the  image  size  of  the 

taxget  remains  constant.  Figure  11  shows  a  typical  run  of  the  system  in  which  the  focal 

length  is  increased  so  that  it  compensates  for  the  target  motion  away  from  the  camera  head. 

With  the  expertise  gained  from  zooming  for  size  constancy,  we  can  approach  the  problem 

of  zooming  for  scale  change.  Changing  scale  poses  increased  demands  on  target  identifica¬ 

tion  and  localization  because  commonly  used  approaches  such  as  cross-correlation  are  not 

scale-invariant.  Alternatives  include  feature-based  tracking  (e.g.  [17])  or  the  use  of  adaptive 

correlation  templates  (e.g.  [12]). 

2.4  National  Institute  of  Standards  and  Technology 

(Martin  Herman,  David  Coombs,  Sandor  Szabo,  Tsai-Hong  Hong) 

NIST  was  responsible  for  developing  the  vision  processing  platform,  assisting  in  integrat¬ 

ing  University  software  onto  the  platform,  and  running  the  platform  on  vehicles  at  the  NIST 
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Target  distance 
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Figure  11;  Focal  length  responding  to  changing  target  distance. 

facility.  In  addition,  NIST  collected  video  data  using  the  NIST  HMMWV,  and  worked  on 

target  tracking  and  ga^ie  control  software.  NIST  completed  development  of  the  platform  and 

worked  with  the  Universities  to  demonstrate  two  components  of  RSTA  on  the  Move:  image 

stabilization  and  independent  motion  detection. 

The  NIST  vision  processing  platform  is  based  on  industry-standard  components  which 

allow  us  to  integrate,  test  and  distribute  results  with  minimal  amounts  of  effort.  For  ex¬ 

ample,  approximately  one  hour  was  required  to  initially  install  and  run  software  from  each 

University.  This  allows  us  to  spend  a  considerably  greater  portion  of  our  time  in  analyzing 

and  improving  system  performance.  The  platform,  designed  for  mobile  applications,  was 

easily  shipped,  set  up  and  demonstrated  at  ARPA’s  UGV  Demo  C  in  Denver  in  July  1995. 

Since  then  we  have  completed  the  power  conversion  of  the  system  so  that  we  can  now  run 

from  vehicle  DC  power  sources  as  well  as  conventional  AC  sources.  We  are  close  to  upgrad- I 

ing  our  computing  system  to  three  processors  and  to  Solaris  2.4  which  will  allow  us  to  take 

full  advantage  of  symmetric  multiprocessing  and  real-time  scheduling.  Our  design,  integrat¬ 

ing  the  RSTA  software  components  and  taking  full  advantage  of  multiple  general  purpose 

processors,  and  multiple  specialized  image  processors  is  almost  complete.  By  early  Spring 

of  1996  we  were  able  to  perform  experiments  on  the  NIST  HMMWV  on  a  regular  basis. 
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Because  of  our  close  involvement  with  the  ARPA  Demo  II  program  and  the  Army  Research 

Laboratory,  we  feel  that  the  results  of  our  effort  can  be  readily  integrated  into  future  DoD 

mobile  robot  applications. 

The  NIST  vision  processing  system,  designed  for  RSTA  on  the  Move  applications,  is 

capable  of  performing  sophisticated  experiments  in  mobile  vehicle  applications.  The  system 

consists  of  a  TRC  UniSight/BiSight  camera  head  (pan/tilt/vergence),  a  Datacube  MV200 

image  processor  for  low  level  image  processing  (acquisition,  filtering,  overlays,  etc.),  and  a 

suite  of  fast  SPARC  processors  (for  motion  analysis,  tracking,  etc.).  Both  the  image  stabi¬ 

lization  algorithm  from  the  University  of  Maryland  and  the  independent  motion  detection 

algorithm  from  the  University  of  Rochester  rely  on  image  processing  taking  place  in  both 

the  specialized  Datacube  environment  and  the  general  purpose  SPARC  environment.  The 

University  of  Pennsylvania  tracking  software  relies  on  the  specialized  motion  controller  for 

the  camera  head  (a  Delta  Tau  PMAC  motion  controller  board)  and  the  SPARC  environment. 

The  system  components  of  the  vision  processing  platform  consist  of  a  VME-based  card 

cage  housing  all  the  processor  boards,  a  two  gigabyte  ruggedized  hard  disk,  and  electronics  for 

the  cameras  and  the  TRC  camera  head.  The  VME  provides  power  and  fast  communications 

between  a  Themis  SPARC  lOMP  processor  board,  the  Datacube  MV200  image  processor 

board,  and  the  Delta  Tau  PMAC  motion  controller  board. 

The  Themis  board  is  outfitted  with  an  80  MHz  and  two  90  MHz  HyperSparc  processors. 

We  dedicate  one  processor  to  image  stabilization,  one  to  independent  motion  detection,  and 

one  to  tracking.  The  processors  are  run  in  pipeline  mode  with  the  results  from  one  stage 

being  fed  to  the  next  stage.  Additional  parallelization  within  stages  could  be  added  to  reduce 

the  overall  latency.  By  changing  from  Solaris  1.1  to  Solaris  2.4,  we  can  take  advantage  of 

the  multithreading  libraries  and  the  real-time  scheduling  facilities.  Changing  to  a  complete 

Solaris  system  also  allows  us  to  migrate  away  from  having  separate  operating  systems  for 

development  and  real-time  applications,  thus  further  simplifying  integration.  All  of  the  code 

is  written  in  C/C-f-h  and  makes  use  of  the  GNU  Free  Software  Foundation  environment. 

We  have  installed  and  tested  software  from  the  University  of  Rochester  and  the  University 

of  Maryland  under  this  environment  without  any  problems. 

The  Datacube  MV200  is  practically  the  industry  de-facto  standard  for  real-time  vision 28 



processing.  We  have  installed  a  complete  programming  environment  for  the  MV200:  Im- 

ageflow,  Advanced  Imaging  Tools,  WitFlow,  and  Veil.  We  have  also  installed  a  miniwarper. 

Both  the  University  of  Rochester  and  the  University  of  Maryland  algorithms  require  the 

MV200,  but  we  can  pipeline  the  algorithms  using  two  MV200  boards. 

Table  2:  Detection  results  of  three  stabilization  algorithms. 

Algorithm Threshold %  targets 
detected ^  frames  to acq.  target 

Avg.  false 
alarms/frame 

%  targets 

segmented 
Projection 17 0 NA 

NA 

NA 
FTA  1 12 0 NA 

NA 

■  NA 

FTA2 12 
100 

7 1 

67 

The  Delta  Tau  PMAC  motion  controller  board  is  used  for  control  of  the  TRC  head. 

NIST  has  experience  in  this  area,  having  built  a  head  (TRICLOPS)  in  the  past,  and  we  can 

incorporate  previously  developed  head  control  software  into  the  RSTA  application.  We  have 

received  software  from  the  University  of  Pennsylvania  for  controlling  the  head  at  a  low  level 

and  have  also  developed  our  own  software  for  computing  quintic-based  smooth  trajectories. 

The  NIST  system  is  completely  self-contained.  Each  of  the  components  is  designed  for 

modularity,  having  its  own  dedicated  power  conditioner  to  run  off  DC  power  sources.  Suffi¬ 

cient  power  exists  to  run  a  fully  configured  four-processor  SPARC  lOMP,  three  MV200’s,  the 

motion  controller  board,  and  an  additional  I/O  processor  designed  for  a  potential  vestibular 

sensor  system.  All  the  components  are  housed  in  a  sealed,  ruggedized  enclosure  designed  for 

outdoor  vehicles.  NIST,  with  the  support  of  the  Army  Research  Laboratory,  also  maintains 

a  fully  robotic  HMMWV  which  enables  us  to  perform  experiments  on  a  regular  basis. 

Data  Collection.  NIST  has  collected  over  six  hours  of  videotape  from  color  CCD 

cameras  rigidly  mounted  on  the  HMMWV,  driving  at  up  to  40  kph  on-  and  off-road  at 

the  NIST  site  in  Gaithersburg,  MD  between  December  1993  and  June  1995.  The  terrain 

includes  campus  roads,  fields  and  woods.  Civilian  vehicles  can  be  seen  driving  on  the  NIST 

grounds  and  on  the  surrounding  roads  (including  highway  1-270)  at  ranges  up  to  2000  m. 

Pedestrians  and  deer  are  also  visible  on  occasion.  The  cameras  are  rigidly  mounted  on  the 

vehicle  in  forward-looking  and  oblique-looking  (60  degrees  off  heading)  orientations.  The 
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lens  focal  lengths  used  range  from  5  mm  to  75  mm.  No  stabilization  was  used  (neither 

mechanical  stabilization  of  the  cameras  nor  digital  stabilization  of  the  video)  and  image 

jitter  is  particularly  noticeable  with  longer  focal-length  lenses. 

3  Supporting  Basic  Research 

In  addition  to  the  integration  activities  outlined  in  the  previous  section,  each  of  the  consor¬ 

tium  members  also  pursued  a  program  of  basic  research  on  enabling  technologies  for  RSTA 

on  the  Move.  In  this  section  we  provide  brief  descriptions  of  some  of  these  research  projects. 

3.1  Performance  Characterization  of  Image  Stabilization  Algorithms — University 

of  Maryland 

We  have  carried  out  a  comparative  study  of  image  stabilization  algorithms  in  the  context 

of  an  automatic  target  tracking  system.  This  study  was  conducted  jointly  with  the  Army 

Research  Laboratory  (ARL).  The  goal  is  to  perform  target  acquisition  through  a  process  of 

background  suppression  and  motion  estimation.  In  order  to  accomplish  this  it  is  important 

that  the  input  sequence  be  stabilized  so  that  image  motion  due  to  camera  motion  as  the 

camera  is  panned,  or  as  the  camera  moves  through  the  scene,  is  compensated  for. 

Three  stabilization  algorithms  were  compared  with  respect  to  target  false  alarm  and  false 

dismissal  rates,  time  to  acquisition  of  targets,  and  a  gross  measure  of  the  accuracy  of  target 

segmentation. 

•  The  first  algorithm  was  developed  at  ARL  to  compensate  for  wind  loading  on  an  un¬ 

manned  robotic  platform.  It  is  a  simple  algorithm  that  can  only  estimate  integer  image 

translations,  and  operates  on  normalized  row  and  column  projections  of  consecutive 

frames  in  the  video  sequence. 

•  The  second  algorithm  was  developed  at  the  University  of  Maryland;  it  is  a  multireso¬ 

lution  version  of  the  algorithm  described  in  Section  2  of  this  report. 

•  The  third  algorithm  was  a  generalization  of  the  second  one;  it  uses  longer  image  se¬ 

quences  for  motion  estimation. 
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In  spite  of  the  fact  that  the  stabilized  image  sequences  obtained  from  the  three  algorithms 

were  perceptually  almost  indistinguishable,  there  were  dramatic  differences  in  performance 

between  the  first  two  algorithms  and  the  third.  The  first  two  algorithms  had  unacceptably 

high  false  dismissal  and  false  alarm  rates  on  the  tested  image  sequences.  On  the  other  hand, 

when  the  target  tracker  was  integrated  with  the  third  algorithm,  it  achieved  a  0%  false 

dismissal  rate  and  a  1%  false  alarm  rate  on  real  IR  sequences.  Details  of  this  study  axe 

reported  in  [1]. 

Figure  12  shows  a  typical  image  from  one  of  the  real  FLIR  sequences  employed  in  the 

experiments.  The  target,  near  the  top  of  the  image,  is  outlined  in  a  box.  Table  2  compares 

the  detection  results  of  the  three  stabilization  algorithms  on  one  of  the  FLIR  sequences. 

Again,  even  though  there  is  little  perceptual  difference  between  the  stabilized  sequences 

produced  by  the  three  algorithms,  the  impact  of  the  small  differences  on  target  acquisition 

and  false  alarm  detection  rates  were  quite  significant. 

Figure  12:  Typical  image  from  a  real  FLIR  sequence. 

3.2  3D  Model-Based  Image  Stabilization — University  of  Maryland 

We  have  studied  the  use  of  combined  visual  cues  and  dynamic  models  for  the  stabilization 

of  calibrated  or  uncalibrated  image  sequences  [19]. 

Parameters  relevant  to  image  warping  are  estimated  by  combining  information  from 

different  tracked  tokens,  namely  points  and  horizon  lines.  These  parameters  are  simply  the 
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camera  rotational  velocity  if  intrinsic  camera  parameters  are  available,  or  the  projectivity 

coefficients,  in  the  uncalibrated  case.  Image  plane  displacements  of  distant  feature  points 

may  unambiguously  characterize  rotational  motion.  However,  such  points  are  sometimes 

difficult  to  detect  and  track,  due  to  the  absence  of  sufficient  intensity  gradient  information. 

Horizon  lines,  when  present,  on  the  other  hand,  constitute  very  strong  visual  cues,  requiring 

relatively  simple  operations  for  their  tracking.  These  tokens  are  therefore  both  used  in  our 

stabilization  scheme. 

We  have  investigated  how  to  use  temporal  information  in  a  sequence  to  facilitate  the 

estimation  of  parameters  of  interest.  Image  stabilization  is  a  process  closely  related  but  not 

equivalent  to  image  registration.  Registration  techniques  can  be  extended  for  stabilization 

purposes.  Image  stabilization  is  inherently  different  in  that  it  allows  the  use  of  dynamical 

information  over  long  temporal  windows.  In  unmanned  ground  vehicle  application,  cameras 

are  mounted  rigidly  on  the  platform.  The  rotation  of  the  vehicle  arises  from  the  rotational 

movement  of  the  vehicle.  It  is  therefore  possible  to  employ  a  kinetic  law  which  captures 

the  rotation  of  the  platform  to  model  the  temporal  behavior  of  the  parameters  of  interest. 

However,  with  the  aid  of  visual  cues,  simple  kinematic  laws  become  feasible.  We  therefore 

use  a  kinematic  law  to  model  the  temporal  behavior  of  relevant  parameters. 

Specifically,  for  calibrated  sequences,  since  the  intrinsic  parameters  of  the  camera  are 

known,  the  perspective  projection  model  which  describes  the  relationship  between  3D  scenes 

and  their  2D  projections  can  be  used  to  characterize  the  projection  of  both  distant  points 

and  horizon  lines.  After  the  points  and  horizon  lines  are  tracked  over  the  sequence,  they 

can  be  used  along  with  a  kinematic  law  to  estimate  the  rotational  parameters.  Based  on  the 

estimated  parameters,  a  stabilized  sequence  is  generated. 

For  uncalibrated  sequences,  to  integrate  distant  points  and  horizon  lines,  a  different 

description  of  the  movement  of  horizon  lines  is  employed.  This  leads  to  the  estimation 

of  eight  projective  coefficients,  in  order  to  stabilize  the  uncalibrated  sequence.  However, 

the  estimates  of  these  projective  coefficients  are  very  sensitive  to  the  tracking  of  points 

and  lines.  On  the  other  hand,  the  intrinsic  parameters  are  often  approximately  known. 

Instead  of  estimating  the  eight  projective  coefficients,  our  uncalibrated  stabilization  scheme 

is  then  similar  to  the  calibrated  scheme  and  concentrates  on  estimating  the  three  rotational 
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Figure  13:  (a)  A  sample  image  from  a  sequence,  (b)  an  image  with  horizon  line  detected, 

(c)  an  image  with  point  trajectories,  and  (d)  a  plot  showing  the  estimated  3D  rotational 

parameters 

parameters  while  assuming  the  approximate  intrinsic  parameters. 

Both  schemes  have  been  tested  on  real  sequences  with  good  results.  The  results  of  this 

research  are  illustrated  in  Figures  13(a-d).  Figure  13a  shows  a  sample  image  from  an  outdoor 

sequence.  Figure  13b  is  the  same  image  with  the  horizon  line  superimposed.  Figure  13c  shows 

the  point  trajectories  for  features  in  that  sequence  and  Figure  13d  is  a  plot  of  the  estimated 

3D  rotational  parameters. 

3.3  Perception  of  the  yGV’s  Environment — University  of  Maryland 

Our  work  on  RSTA  on  the  Move  has  concentrated  on  the  interplay  between  the  recovery 

of  three-dimensional  motion  information  and  the  recovery  of  descriptions  of  the  immediate 
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environment  of  the  UGV.  Regarding  the  perception  of  3D  motion  we  have  implemented  a 

set  of  techniques  that  recognizes  a  collection  of  global  patterns  of  robust  spatiotemporal 

measurements.  The  localization  of  these  patterns,  which  are  independent  of  the  structure 

of  the  scene  in  view,  encodes  the  underlying  3D  motion  parameters,  enabling  stabilization 

through  the  interpolation  of  the  UGV’s  intended  motion  in  the  temporal  evolution  of  the 

measured  motion.  Figure  14  shows  experiments  using  the  approach  developed  in  [4]  with 

real  data  collected  from  the  vehicle. 

A  recent  technical  development  related  to  the  perception  of  the  UGV’s  environment  is 

the  concept  of  iso-distortion  surfaces,  a  framework  for  studying  the  relationship  between 

the  computation  of  3D  motion  and  depth  from  a  sequence  of  images  [3].  The  underlying 

conceptual  theme  is  that  motion  errors  (e.g.,  errors  between  retinal  motion  and  perceived  3D 

motion)  affect  depth  estimates  systematically.  The  understanding  of  the  geometry  of  this 

distortion  of  depth  is  essential  for  understanding  the  interplay  between  3D  motion  and  shape 

processing  and  thus  for  interpreting  visual  motion.  The  introduced  framework  characterizes 

this  relationship  via  a  family  of  iso-distortion  contours,  which  describes  the  loci  over  which 

depths  are  distorted  by  the  same  amounts.  Figure  15  shows  an  example  of  the  iso-distortion 

contours  that  result  from  intersecting  the  iso-distortion  surfaces  with  the  ̂ x-plane. 

The  tool  of  iso-distortion  surfaces  allows  us  to  study  the  very  practical  problem  of  calcu¬ 

lating  the  precision  of  an  inertial  system  that  is  sufficient  for  obtaining  unbiased  estimates  of 

the  vehicle’s  heading  direction,  using  algorithms  that  combine  inertial  and  visual  measure¬ 

ments.  The  process  is  explained  in  Figure  16. 

3.4  Fast,  Filter-Based,  Object  Location  and  Identification — 

University  of  Rochester 

We  have  developed  a  visual  location  and  identification  system  [16]  based  on  efficiently  com¬ 

putable  iconic  representations.  The  system  uses  two  primary  visual  routines,  one  for  iden¬ 

tifying  the  visual  image  near  the  fovea  [object  identification),  and  another  for  locating  a 

stored  prototype  on  the  retina  [object  location).  The  iconic  representations  are  based  on 

high-dimensional  feature  vectors  obtained  from  the  responses  of  an  ensemble  of  steerable 
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(g)  (h)  (i) 

Figure  14:  A  camera  mounted  on  the  captured  a  sequence  of  images  as  the  vehicle  moved 

along  rough  terrain  in  the  countryside,  thus  undergoing  continuously  changing  rigid  motion, 

(a)  shows  one  frame  of  the  sequence  with  the  normal  flow  field  overlaid,  (b),  (d)  and  (f) 

show  the  positive  (light  color)  and  negative  (dark  color)  vectors  of  the  longitudinal  patterns 

corresponding  to  the  x-,  y-  and  z-axes  (see  [4]).  (c),  (e)  and  (g)  show  the  corresponding 

fitted  patterns,  (h)  shows,  superimposed  on  the  image,  the  boundaries  of  the  patterns  whose 

intersections  provide  the  FOE  and  the  AOR  (the  point  where  the  rotation  axis  pierces  the 

image  plane),  (i)  Measurements  are  not  everywhere  available  (strong  intensity  gradients  are 

sparse),  but  a  set  of  patterns  can  still  be  fitted,  resulting  in  two  bounded  areas  as  locations 
for  the  FOE  and  the  AOR. 

Gaussian  derivative  spatial  filters  at  a  number  of  orientations  and  scales.  Such  feature  vec¬ 

tors  serve  as  effective  photometric  descriptions  of  the  local  intensity  variations  present  in  the 

image  region  about  a  scene/object  point;  in  addition,  they  can  be  made  rotation  and  scale 

invariant  [16].  The  iconic  feature  vectors  are  stored  in  two  separate  memories.  One  memory 

is  indexed  by  image  coordinates  while  the  other  is  indexed  by  object  coordinates.  Object 
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Figure  15:  Iso-distortion  contours  resulting  from  intersecting  the  iso- distortion  surfaces  with  the 

Zx-plane  (the  plane  defined  by  the  optical  axis  and  the  horizontal  axis  of  the  camera).  The 

horizontal  component  xq  of  the  actual  Focus  of  Expansion  is  xq  =  50.  Assuming  that  the  error  in 

estimating  xq  is  xoe  =  ~50  and  the  error  in  estimating  the  rotation  around  the  y-axis  is  /3e  —  0.001, 

Figures  15a  and  15b  show  iso-distortion  contours  for  two  different  values  of  the  FOV.  The  value 

next  to  each  contour  denotes  the  amount  of  multiplicative  distortion  (1.0  means  no  distortion). 

location  matches  a  localized  set  of  model  features  with  image  features  at  all  possible  retinal 

locations.  Object  identification  matches  a  foveal  set  of  image  features  with  all  possible  model 

features. 

We  describe  here  in  more  detail  the  routine  for  object  location;  details  regarding  the 

identification  routine,  which  employs  Kalman  Filter  theory  and  visual  learning,  can  be  found 

in  [15].  The  location  routine  crucially  depends  on  the  fact  that  only  a  single  model  object  is 

being  matched  to  other  objects  in  an  image  at  any  instant.  Let  us  denote  this  model  that  is 

to  be  located  in  the  current  image  as 

M=  =  l,...,mniax}-  (20) 

where  r’"  are  the  object’s  filter  response  vectors  extracted  from  different  spatial  locations. 

The  location  algorithm  in  its  most  general  form  proceeds  as  follows: 

1.  For  each  response  vector  r”^  representing  some  model  point  m,  create  a  Saliency  Image 

Sm  defined  by 

5,.(x,y)=||r(x,j/)-r-il^  (21) 36 



Figure  16:  The  effectiveness  of  a  relatively  inexpensive,  not  highly  accurate  inertial  sensor  depends 

on  the  distribution  of  depths  in  the  scene  in  view.  The  analysis  using  iso-distortion  contours  is 

based  on  whether  “negative”  depth  values  arise,  and  considers  as  a  criterion  for  the  estimation 
of  the  FOE  the  point  that  gives  rise  to  a  minimum  number  of  non-positive  depth  measurements. 

The  level  contours  in  (b),  (c),  and  (d)  show  the  variation  in  the  number  of  negative  depths  as  the 

FOE  estimates  move  away  from  the  true  FOE  (indicated  by  the  cross).  The  best  FOE  estimate 

is  associated  with  the  “bottom”  of  the  contours  (minimum  number  of  negative  depths).  The  axes 
of  these  contour  plots  represent  the  error  of  the  FOE  in  degrees;  they  are  not  plotted  at  the  same 

scale  as  the  image  in  (a).  FOE  =  30®;  fie  =  0.04®/s  (error  in  rotation  around  the  y-ajds);  {Z/W)irad 

adjusted  by  changing  W.  The  analysis  suggests  that  an  inertial  sensor  with  an  accuracy  of  0.04°/s 
may  be  problematic  in  outdoor  scenes  but  should  be  very  successful  in  indoor  scenes. 
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2.  Find  the  best  match  point  in  the  image  for  each  m  using  the  following  Winner- Take- All 

rule: 

=argmin(^^j,){5™(x,y)}  (22) 

3.  Construct  a  binary  image  B\ 

B{x,y)  = 

where  m  =  1, . . . ,  mmax- 

4.  Output  the  location  of  the  object  in  the  current  image  as 

{xb,yb)  =  argmax(^  j,)  {S{x,y)  *  B{x,y)}  (24) 

where  B  is  an  appropriate  blurring  function  whose  size  can  usually  be  estimated  in  an 

active  vision  environment. 

The  location  algorithm  operates  at  close  to  real-time  rates  in  an  active  vision  system 

consisting  of  the  University  of  Rochester  binocular  head  with  two  movable  color  CCD  cameras 

that  provide  input  to  a  Datacube  MaxVideo™  MV200  pipeline  image-processing  system. 

Given  a  live  input  image  (of  size  512  x  480)  from  the  camera,  the  MV200  executes  nine 

convolutions  using  nine  different  8x8  discrete  Gaussian  derivative  filter  kernels  on  a  low- 

pass  filtered  five-level  pyramid  of  the  image  to  obtain  the  response  vectors  for  all  points  in  the 

current  image;  these  vectors  are  stored  in  a  “memory  surface”  S.  During  the  memorization 

phase,  filter  responses  are  extracted  for  each  of  the  sparse  set  of  points  located  within  the 

given  object.  During  the  location  phcise,  a  model  response  vector  is  loaded  into  the  8x8 

convolution  kernel  and  convolved  with  the  memory  surface  S  containing  the  response  vectors 

for  each  point  of  the  input  image;  the  closest  vectors  can  be  selected  by  simply  thresholding 

the  results  of  the  convolution  at  individual  thresholds  to  obtain  candidate  match  points. 

Figure  17  shows  an  example  of  the  performance  of  the  location  routine  in  a  realistic  scene. 

Here  we  demonstrate  the  algorithm’s  ability  to  find  a  model  object  (in  this  case,  the  stuffed 

doll)  in  the  presence  of  object  motion,  clutter,  and  perspective  distortion;  ‘-1-’  denotes  the 

best  matching  location  found  by  the  algorithm. 
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1  if  {x,y)  €  {{xb^,ybm)} 

0  otherwise 

(23) 



Figure  17:  Example  of  locating  a  model  object  (stuffed  doll)  under  conditions  of  motion, 

clutter,  and  perspective. 

3.5  Active  Intelligent  Observers — University  of  Pennsylvania 

Current  active  vision  systems  address  two  primary  questions:  how  to  select  interesting  parts 

of  the  scene  to  look  at  and  how  to  maintain  acquisition  of  the  selected  objects.  We  are 

interested  in  building  an  active  intelligent  observer  on  top  of  a  reflexive  gaze  control  system. 

Specifically,  we  will  use  high-level  knowledge  to  direct  the  actions  of  an  active  vision  system 

using  feedback  from  low-level  gaze  control  mechanisms. 

Our  approach  comprises  three  phases.  In  the  teaching  phase,  the  active  intelhgent  ob¬ 

server  acquires  a  series  of  views  of  a  reference  object  and  integrates  them  into  a  structural 

model  of  the  object.  In  the  acquisition  phase,  the  observer  searches  for  the  desired  object 

in  the  scene  and  establishes  the  correct  image  size  by  moving  and  zooming.  In  the  guidance 

phase,  the  observer  dynamically  constructs  a  gaze  control  path  that  leads  to  the  optimal 

aspect  for  the  current  task.  The  structural  model  of  the  object  allows  the  observer  to  de¬ 

termine  the  location  of  the  optimal  aspect  in  the  view  sphere  and  to  generate  intermediate 

views  that  guide  the  observer  along  the  gaze  control  path.  In  robotic  applications,  the  ma¬ 

nipulated  object  must  frequently  be  examined  as  to  its  identity  and  orientation.  The  active 

intelligent  observer  uses  the  structural  model  to  determine  the  object’s  orientation  and  to 

move  around  it  to  view  specific  features. 

Low-level  image  measures  for  gaze  control  are  notoriously  sensitive  to  changes  in  scale, 

orientation,  and  viewing  aspect.  However,  if  a  simple  template  is  augmented  with  high-level 

structural  information,  new  views  can  be  synthesized  to  guide  the  observer’s  gaze  between 



known  views.  Conversely,  the  observer  can  infer  the  pose  of  an  object  from  the  current 

view  by  comparing  it  to  the  stored  knowledge.  The  basic  idea  of  this  approach  is  to  add 

a  higher  level  of  feedback  to  gaze  control  and  close  the  perception-action  loop  around  the 

visual  servoing  task. 
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